Jmjd3-Mediated H3K27me3 Dynamics Orchestrate Brown Fat Development and Regulate White Fat Plasticity.

نویسندگان

  • Dongning Pan
  • Lei Huang
  • Lihua J Zhu
  • Tie Zou
  • Jianhong Ou
  • William Zhou
  • Yong-Xu Wang
چکیده

Progression from brown preadipocytes to adipocytes engages two transcriptional programs: the expression of adipogenic genes common to both brown fat (BAT) and white fat (WAT), and the expression of BAT-selective genes. However, the dynamics of chromatin states and epigenetic enzymes involved remain poorly understood. Here we show that BAT development is selectively marked and guided by repressive H3K27me3 and is executed by its demethylase Jmjd3. We find that a significant subset of BAT-selective genes, but not common fat genes or WAT-selective genes, are demarcated by H3K27me3 in both brown and white preadipocytes. Jmjd3-catalyzed removal of H3K27me3, in part through Rreb1-mediated recruitment, is required for expression of BAT-selective genes and for development of beige adipocytes both in vitro and in vivo. Moreover, gain- and loss-of-function Jmjd3 transgenic mice show age-dependent body weight reduction and cold intolerance, respectively. Together, we identify an epigenetic mechanism governing BAT fate determination and WAT plasticity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The histone H3 Lys 27 demethylase JMJD3 regulates gene expression by impacting transcriptional elongation.

The histone H3 Lys 27 (H3K27) demethylase JMJD3 has been shown to play important roles in transcriptional regulation and cell differentiation. However, the mechanism underlying JMJD3-mediated transcriptional regulation remains incompletely understood. Here we show that JMJD3 is associated with KIAA1718, whose substrates include dimethylated H3K27 (H3K27me2), and proteins involved in transcripti...

متن کامل

Control of differentiation in a self-renewing mammalian tissue by the histone demethylase JMJD3.

The recent discovery of H3K27me3 demethylases suggests that H3K27me3 may dynamically regulate gene expression, but this potential role in mammalian tissue homeostasis remains uncharacterized. In the epidermis, a tissue that balances stem cell self-renewal with differentiation, H3K27me3, occupies the promoters of many differentiation genes. During calcium-induced differentiation, H3K27me3 was er...

متن کامل

Emergence during development of the white-adipocyte cell phenotype is independent of the brown-adipocyte cell phenotype.

In mammals, two types of adipose tissue are present, brown and white. They develop sequentially, as brown fat occurs during late gestation whereas white fat grows mainly after birth. However, both tissues have been shown to have great plasticity. Thus an apparent transformation of brown fat into white fat takes place during post-natal development. This observation raises questions about a possi...

متن کامل

miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit

Brown adipocytes are a primary site of energy expenditure and reside not only in classical brown adipose tissue but can also be found in white adipose tissue. Here we show that microRNA 155 is enriched in brown adipose tissue and is highly expressed in proliferating brown preadipocytes but declines after induction of differentiation. Interestingly, microRNA 155 and its target, the adipogenic tr...

متن کامل

MUSASHI-Mediated Expression of JMJD3, a H3K27me3 Demethylase, Is Involved in Foamy Macrophage Generation during Mycobacterial Infection

Foamy macrophages (FM)s harbor lipid bodies that not only assist mycobacterial persistence within the granulomas but also are sites for intracellular signaling and inflammatory mediators which are essential for mycobacterial pathogenesis. However, molecular mechanisms that regulate intracellular lipid accumulation in FMs during mycobacterial infection are not clear. Here, we report for the firs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental cell

دوره 35 5  شماره 

صفحات  -

تاریخ انتشار 2015